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LETTER TO THE EDITOR 

Multivalley structure in Kauffman’s model: 
analogy with spin glasses 

B Derridat and H Flyvbjerg 
The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copen- 
hagen, Denmark 

Received 18 July 1986 

Abstract. Kauffman’s model describes a random network of automata. Our calculations 
indicate that the multivalley structure of the basins of attraction in Kauffman’s model is 
very similar to that of infinite-range spin glasses. The similarity with spin glasses is tested 
quantitatively by computing the probability that two initial configurations fall into the 
same valley. 

Networks of random automata are simple random systems which exhibit interesting 
dynamical properties [ 1-31. They have several qualitative features in common with 
other strongly disordered systems like spin glasses: randomness, the role played by 
the overlaps between different configurations and the phase space split into many 
valleys. In this letter we study quantitatively how phase space is broken into basins 
of attraction and compare this multivalley structure with what is known in the mean-field 
theory of spin glasses [4-61. 

We consider here Kauffman’s model [7-131. The system consists of N sites, each 
site containing an Ising spin (ai = 1 or 0). The time evolution is determined by N 
functions f; independently chosen for each site i and by the choice of K input sites 
j,( i), j,( i ) ,  . . . , j, ( i )  for each site i ( K  is a parameter of the model). Each function 
f; is specified once its 2K possible values are chosen. In Kauffman’s model, which is 
an infinite-dimension model [ 141, the input sites j , (  i) . . . j, ( i )  are chosen randomly 
among the N sites and each value of the 2, possible values of each function f; is 
chosen to be 1 with probability 4 or 0 with probability {. 

The functions f; and the input sites j l ( i ) .  . . j ,(i) do not change with time (the 
disorder is quenched) and the time evolution of the spin configurations is given by 

(1) 

Since the system is deterministic and has a finite number ( 2 N )  of configurations, the 
evolution of any configuration ends up by being periodic. Thus all attractors are cycles. 

A given sample (defined by its set of functions f; and input sites j l ( i )  . . . k K ( i ) )  
has a certain number of attractors. The number S of these attractors, their periods 
and their basins of attraction are, of course, sample dependent. For each sample of 
N sites, let us call Cl,  the number of initial spin configurations which fall onto the sth 
attractor. 

ai(t+ 1) =f;(aj,( t) ,  * * . *  a j K ( t ) ) *  

t Permanent address: SPT, CEN Saclay 91191, Gif-sur-Yvette, France. 

0305-4470/86/161003 +06%02.50 @ 1986 The Institute of Physics L1003 



L1004 Letter to the Editor 

Since each spin configuration belongs to a single basin of attraction, one has 

Cn,=2N 
S 

We can then define the weight W, of the sth attractor by 

w, = n, f 2N. (3) 

W, is just the normalised size of the sth basin of attraction, i.e. W, is the probability 
that a randomly chosen configuration at time t = 0 will fall onto the sth attractor. 

For finite N, the number S of attractors and their weights W, change from sample 
to sample. One can then wonder what happens in the thermodynamic limit ( N  + 03). 

Is phase space divided into more and more basins of attraction as N + a? 
Do all the weights W, become smaller and smaller as N increases or do a few of 

them remain finite? 
Do the sizes of the biggest basins of attraction fluctuate from sample to sample 

when N + m ?  
All these questions have already been posed in the theory of spin glasses where it 

was shown that in the mean-field cases (the Sherrington-Kirkpatrick model and random 
energy model) [4-61 the phase space is divided into an infinite number of valleys but 
the valleys with the biggest weights have a finite weight and these weights fluctuate 
from sample to sample in the limit N + 00. 

In order to see whether such effects are present in Kauffman's model, an easy 
quantity to consider is 

Y'C w:. 
S 

(4) 

If Y + 0 as N + 03, this means that, in the thermodynamic limit, all the weights become 
smaller and smaller. On the other hand, if Y remains finite, there are a few big basins 
of attraction which fill almost the whole phase space. Also if Y fluctuates from sample 
to sample, this means that the sizes of the biggest basins of attraction fluctuate. So 
we see that, to understand the multivalley structure of phase space, it is useful to 
compute F and Y 2  (where the average is done over disorder, i.e. over different choices 
of the functions J ;  and ofthe input sites j , ( i )  . . . j K ( i ) ) .  

To compute 7 and Y2,  we have used two different methods. 
For small sizes, N d 14, we have computed all the basins of attraction and their 

sizes for each sample. So we could obtain Y for each sample by using (4). Then we 
averaged over lo4 samples. The computer time needed in this first method increases 
as 2 N  since we have to visit each spin configuration at least once. In this first approach, 
each sample is built randomly but then Y for this sample is computed exactly. 

For larger sizes, N > 14, we used a completely different approach: a stochastic one. 
For each sample, we choose two random configurations of the spins. Then we iterate 
these two configurations until they fall on their attractors and then we check if they 
fall onto the same attractor. The probability that two randomly chosen initial spin 
configurations fall onto the same attractor is Y for a given sample. (This can be 
understood easily. W, is the probability that a random initial configuration falls on 
attractor s and Ws is the probability that two random initial configurations fall onto 
the sth attractor.) So to measure we iterated only two configurations for each sample 
and we averaged the number of t iaes they fall onto the same attractor over many 
samples ( lo4 samples). To measure Y2,  we iterated for each sample four configurations 
(say, configurations A, B, C and D) and Y 2  is just the average over many samples 
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that A and B fall on the same attractor a and that C and D fall on the same attractor 
p ( a  and p need not be the same). With this second approach the computer time 
increases like N T ( N )  where T ( N )  is the typical time for a configuration to fall onto 
an attractor and to complete one cycle. It turns out that T ( N )  depends on K [8] and 
for K = 1 , 2  we could increase N up to 224 whereas we could only go up to n = 40 
for K = 3 and N = 28 for K = 4, because T (  N )  increases much faster with N. 

Sinceto compute Y2 we need to iterate four spin configurations, we could also 
measure Y3 and Y4 defined by 

Y 3 = C  w: ( 5 )  

Y 4 = C  wf. ( 6 )  
S 

S - 
Y3 is the average number of times that A, B and C fall on the same attractor and % 
is the average number of times that the four configurations fall on the same attractor. 

All these quantities can be computed in the mean-field theory of spin glasses either 
directly in the random energy model [6] or using the independent random free energy 
picture for the Sherrington-Kirkpatrick model [ 5 ]  and one finds that for spin glasses 
they are all related: - 

Y’=f(  F + 2 P ’ )  (7) 
Y , = i F ( l +  F) (8) 
y4=:Y(1+ F ) ( 2 +  F). ( 9 )  

- 
- 

All these formulae can easily be obtained from formulae (lo), ( l l ) ,  (31) and (32) of 
Derrida and Toulouse [6]. 

measured for several sizes for K = 1,  2, 3 and 4. We 
see that for k = 1,3 and 4, F seems to have a finite limit as N + CO, whereas for K = 2, 
? decreases slowly with N (notice that the horizontal scale is logarithmic). Therefore 
our results indicate that, at least for K # 2, there remain in the thermodynamic limit 
attractors which have a finite weight. 

In figure l (6 ) ,  we show the N dependence of F-( F)’. Within our error bars, 
this quantity does not seem to vanish as N+m,  indicating that Y remains sample 
dependent even in the thermodynamic limit. Even in the cases K = 3 and K = 4 where 
the largest size value is lower than previous values, the error bar is too large to conclude 
that ? - ( P)’ decreases with N. 

One should notice that for K = 2, if F+O as N+co,  then F-( P)’ must also 
vanish as N + 00 because Y is always positive. We find our results of figures 2(a) and 
( 6 )  rather contradictory because figure l ( a )  indicates that F+O and figure l ( 6 )  
indicates that Y2 - ( F)* remains finite. The fact that K = 2 is more difficult to analyse 
should not be surprising because K = 2 is a marginal case where the convergence to 
the thermodynamic limit is slower [ 131. 

One should also notice that for Kauffman’s model, even for finite N, phase space 
can be broken into several valleys. This is, of course, a difference with spin glasses 
where it is only in the thermodynamic limit that the multivalley structure appears. 

So we see that figures l (a )  and ( 6 )  show that the way phase space is broken into 
valleys for Kauffman’s model is very similar to what it is for infinite-range spin glass 
models (in the thermodynamic limit). 

In order to test whether this analogy is deeper, we tried to see whether formulae 
(7),  (8) and (%could be valid in Kauffman’s model. In figures 2(a) ,  ( 6 )  and ( c ) ,  we 
have plotted Y2, 

In figure l (a) ,  we show 

and y4 against i! 
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Figure 1. ( a )  p plotted against the number of spins N for K z l ( O ) ,  2(A), 3(V) and 
4(0). Each point represents an average over 10 000 samples. ( b )  Y2 - ( P)' plotted against 
N. 

The full curves represent formulae (7), (8) and (9). We see that our numerical data 
seem to agree rather well with these expressions even for finite N. 

The agreement between our data points and the curves in figure 2 should, however, 
be interpreted with the following precaution: Y is a variable which is always between 
0 and 1. Therefore, one has ( F)2 < Y 2  < The broken curves in figure 2 ( a )  represent 
these bounds. Hence, even if formula (7) is not true for Kauffman's model, our data 
points must fall within these bounds. (One can also find bounds for and x: 
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Figure 2. ( a )  7 plotted against p for (0) K = 1 
and 5 s N 6 1 6 0 ,  ( A )  K = 2  and 5 s N s 1 6 0 ,  (V) 
K = 3  and 5sNs40, (0) K = 4  and 5 S N G 2 8 .  
Each point represents the average over l@OO 
samples-me full curve represents formula (7): Y’ = 
f (  p+2 Y’) ,  whereas the broken curves represent the 
bounds p2 s Y 2  c f ( b )  x plotted against f The 
full curve represents formula (8): x= f P( 1 + P), 
whereas the bounds are p2 S x s  p. (c)  plotted 
against V. The full curve shows formula (9): 
Y4 = $x( 1 + p)(2+ p) whereas the bounds are 
- 
P3 S Y4 s v. 

( F)* < < F and ( F)3 < % < ? These bounds are again the broken curves of figures 
2 ( b )  and (c).) 

In Kauffman’s model, one expects a different behaviour for K < 2  and K > 2  
[7 ,8 ,  12, 131. Our results presented here do not show any qualitative difference for 
K = 1 and K = 3 and 4. Just at K = 2, the limit N -+ M is reached more slowly. 

In conclusion, our calculations indicate that the multivalley structure in Kauff man’s 
model is rather similar to what it is in infinite-range spin glasses, even quantitatively 
and for finite N. Very large valleys exist which take up a finite fraction of phase space. 
It would of course, be interesting to compute analytically F, Y2,  and % or to 
improve the statistics and to study larger sizes in order to see whether formulae (7),  
(8) and (9) are exactly or just approximately true. Also it would be interesting to 
compute higher moments of Y in order to see whether the whole probability distribution 
of Y is universal (i.e. whether it is known when the mean F is known) as it is for 
infinite-range spin glasses [4-61. 

It is possible in Kauffman’s model to define Y ( q ) ,  as in spin glasses. It is defined 
by the probability that two initial configurations which have an overlap q fall onto 
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the same attractor. It would be interesting to see whether this Y ( q )  has the same 
statistical properties as the Y which was studied in the present letter. 

Another important question is to know whether the results described here remain 
true in finite dimension. One can define Kauffman’s model in finite dimension by 
putting the spins on a lattice [ 141. We did some preliminary calculations on the square 
lattice ( K  = 4) and we found that Y decreases very quickly to zero as one increases 
the size of the system. Therefore the multivalley structure of Kauffman’s model is 
probably very different in finite dimension, again similar to spin glasses. 

We would like to thank H J Herrmann, D Stauffer and G Weisbuch for useful 
discussions, and Professor H B Nielsen and the Danish Council for Research Policy 
and Planning for economic support. 
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